Selasa, 15 Oktober 2013
Latihan 3 (UTS)
<HTML>
<HEAD>
<TITLE>Integral</TITLE>
</HEAD>
<BODY background="ogmi_03.jpg" text="black">
<p align="center"><font size="6" color="black" face="Gill Sans MT"><b>Integral Tak Tentu Fungsi Trigonometri</p></font></b>
<br><br>
<font face="Gill Sans MT" size="4" color="black">Untuk merancang aturan integral tak tentu dari fungsi-fungsi trigonometri, perlu diingat kembali turunan fungsi-fungsi trigonometri sebagai berikut :</font>
<table border="1" bgcolor="gold">
<tr>
<td align="center" colspan="2">Turunan Fungsi-Fungsi Trigonometri</td>
</tr>
<tr>
<td bgcolor="cyan" align="center">F(x)</td>
<td bgcolor="cyan" align="center">F'(x) = f(x)</td>
</tr>
<tr>
<td>sin x</td>
<td>cos x</td>
</tr>
<tr>
<td>cos x</td>
<td>-sin x</td>
</tr>
<tr>
<td>tan x</td>
<td>sec^2 x</td>
</tr>
<tr>
<td>cot x</td>
<td>-cosec^2 x</td>
</tr>
<tr>
<td>sec x</td>
<td> tan x.sec x</td>
</tr>
<tr>
<td>cosec x</td>
<td>-cot x.cosec x</td>
</table><br><br>
<font size="4" face="Gill Sans MT" color="black">Dengan menggunakan aturan integral tak tentu Integral f(x) dx = F(x) + C yang mempunyai sifat bahwa F'(x) = f(x) dan turunan fungsi-fungsi trigonometri dalam tabel di atas, maka integral tak tentu dari fungsi-fungsi trigonometri dapat dirumuskan sebagai berikut :</font>
<table border="1" bgcolor="gold">
<tr>
<td bgcolor="cyan" align="center">No</td>
<td bgcolor="cyan" align="center">Rumus</td>
</tr>
<tr>
<td align ="center">1</td>
<td>Integral cos x dx = sin x + C</td>
</tr>
<tr>
<td align ="center">2</td>
<td>Integral sin x dx = -cos x + C</td>
</tr>
<tr>
<td align ="center">3</td>
<td>Integral sec^2 x dx = tan x + C</td>
</tr>
<tr>
<td align ="center">4</td>
<td>Integral cosec^2 x dx = -cot x + C</td>
</tr>
<tr>
<td align ="center">5</td>
<td>Integral tan x.sec x dx = sec x + C</td>
</tr>
<tr>
<td align ="center">6</td>
<td>Integral cot x.cosec x dx = -cosec x + C</td>
</table><br><br>
<center>
<table border="1" bgcolor="gold">
<tr>
<td rowspan="5" align="center"><img src="two.JPG"></td>
<td colspan="2" align="center">Identitas Uploader</td>
</tr>
<tr>
<td>Nama</td>
<td>Yuniartika</td>
</tr>
<tr>
<td>Sekolah</td>
<td>SMA Negeri 1 Kuningan</td>
</tr>
<tr>
<td>Twitter</td>
<td><a href="http://www.twitter.com/yuniartikaaa/">@yuniartikaaa</td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="http://yuniartika_13@yahoo.com/">Check this out</td>
</tr>
</table>
</BODY>
</HTML>
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar